

A state of state 1

DATE	THE M. W. KELLOGG COMPANY	SUBJECT 3810	
DEC 88	DESIGN MANUAL - PIPING MECHANICAL	PAGE 2 OF 13	
directio	s producing maximum stress in the shell in the circu n (see Table A, Page 6). The Circumferential Pressu ated by the following formula:		
	$Spc = \frac{PR}{t}$		
WHERE:	 Spc = Circumferential Pressure Stress, psi P = Internal Pressure at design condition under psi. R = Outside radius of pipe shell, inches t = Corroded wall thickness of the pipe shell pl thickness of the reforcement pad (when a pad inches. 	us the	
BEN	TOTAL ALLOWABLE STRESS, S, is the sum of the ALLOWA DING STRESS and PRESSURE STRESS. For the various po binations of normal and short time loading condition licable total allowable stress is given in TABLE B,	ssible s, the	
she	it is desirable to determine the maximum allowable l 11, for a given pipe diameter, pipe thickness, and t design the attachment so that this load will not be imum allowable load on the shell may be determined a	otal stress, exceeded. The	• • • • •
	$f_{m} = \frac{S_{B}t^{1.5}}{1.17 R^{0.5}}$		
WHERE:	fm = Maximum allowable load, lbs / linear inch. Sg = Total allowable BENDING STRESS, psi (S - Sp).		F
per	e actual load induced by the clip, lug, trunnion, and linear inch, shall be calculated as described in pa u 12 and according to the formulas of TABLE A (see P	ragraphs 7	·
ben FIG	circular attachments, such as pipe trunnions which ding in the pipe shell, formulas (1), (2), and (3), URES VI, VII, and VIII, Page 12, are applicable and determine the induced load per linear inch.	given in 🔰	

.

DATE	THE M. W. KELLOGG COMPANY	SUBJECT 3810
DEC 88	DESIGN MANUAL - PIPING MECHANICAL	PAGE 5 OF 13
the cir app	loads caused by thermal expansion, an exception is 1.5 factor is not applied when determining stresses cumferential bending moments. A summary of the fact lied to "f" for different load combinations is given page 6.	s due to tors to be
as dec ori str	stresses due to the attachment load on the shell an LOCAL or DISCONTINUOUS STRESSES. In as much as such rease to a negligible value within a short distance gin. For designs NOT involving thermal effects, the ess may be increased by 100% at such localized place 11.	n stresses from their allowable
pip Whe sig	ERIAL OF ATTACHMENTS: Attachments made of the same r e are usually suitable but often are more adequate n the attachment material is carbon steel, the cost nificant. However, when alloy materials are used as achments, the cost may be increased significantly.	than necessary. is not too
une sub Pip	y in cases where the carbon steel attachment proves conomical or structurally unsound will alloy be per stitute. Such cases must be brought to the attentic ing Mechanical Section for evaluation and approval.	nitted as a on of the
che	general, materials used for attachment should be of mical analysis as the pipe, because it eliminates th lysis for differential thermal expansion.	
piping m	(see Page 10) indicates the temperature limits of th aterials and the attachment material suitable for th ure conditions.	
*		

The second se

DAT	E		THE M. W. KELLOGO	THE M. W. KELLOGG COMPANY						
DEC	88	DE	SIGN MANUAL - PIPI	NG MECHANICAL	PAGE 6 OF 13					
		•••••	TABLE A		· · · · · ·					
		<u>"LOAE</u>	DS FOR CALCULATING LOCAL	IZED BENDING STRESSES	<u>.</u>					
TYPE (OF LOA	DING	LOAD "f" for calcul	ating stress	NOTES					
LONGITUDINAL BENDING MOMENT	CIRCUMFERENTIAL BENDING MOMENT	DIRECT AXIAL FORCE	LOAD DUE TO SUSTAINED EFFECTS (weight, wind, etc)	LOAD DUE TO THERMAL EXPANSION	(1)					
Х			f1 = fL	f1 = fL						
Х		x	$f_1 = f_L + 1.5 f_A$	$f_1 = f_L + 1.5 f_A$						
		x	f1 = 1.5fA	f1 = 1.5fA						
	х		f ₂ = 1.5f _C	f ₂ = f _C						
	Х	х	$f_2 = 1.5(f_C + f_A)$	$f_2 = f_C + 1.5 f_A$						
х	Х	х	$f_2 = 1.5(f_R + f_A)$	$f_2 = f_R + 1.5 f_A$	(2)					

._...

. . . .

ŗ

 f_L = load due to longitudinal bending, (lbs per linear inch)

 f_{C} = load due to circumferential bending, (lbs per linear inch)

 f_A = load due to direct force, (lbs per linear inch).

 f_R = load due to the resultant moments in the longitudinal and circumferential directions, (lbs per linear inch).

· .

DATE	т	HEN	1. W	/. KE	ELLC	DGG	co	MÞ,	ANY			SUBJECT 3810
DEC 88	DESIGN N	1 <u>A</u> 1	۱U	AL	- Pl	PIN	G	ME	EC P	IAI		PAGE 8 OF 13
	<u>" TOT.</u>	AL A	<u>LLO</u>	WAB		<u>e b</u> Stres	<u>SSE</u>	<u>s"</u>	(LOC	CAL)	<u> </u>	
		NO	RMA	L			SH	ORT	TIN	1E		
DESIGN CONDITIONS		TEMPERATURE (2)	PRESSURE (3)	SUSTAINED LOAD	THERMAL		TEMPERATURE	PRESSURE	SUSTAINED LOAD	THERMAL	MIND	TOTAL ALLOWABLE STRESS "S" (1)
NORMAL OPERATING		0	0	σ								2.0Sh
		Ō	0	0	Ì			1			0	
			0						0			
SHORT TIME	IME OPERATING	0	0	0			0	0				2.4Sh
		Ľ		0			0		-			
NORMAL THEF	MAL ONLY	0			0					-		1.25S _c + .25S _h
		0	0	0	0						0	
			0	0			0		1	0		
		0		0	0			0				
SHORT TIME			0		0				0			
WITH THERMA	AL.		0	0		0		$1.5(S_{h} + S_{c})$				
				0	<u> </u>				0	1		
TEST			-		<u> </u>			lo Io	ł	ļ.,		2.4Sc
		L		L	,		Ľ	<u> </u>	Ĺ			

DATE		THE M. W. KELLOGG C	COMPANY		SUBJECT 3810	
DEC 88	DES	SIGN MANUAL - PIPIN	G MECHANI	CAL	PAGE 9 OF 13	
	•					
S _h = bas	sic allo	wable stress at design to	emperature (ps	si).		
S _C = bas	sic allo	wable stress at atmospher	ric temperatur	re (psi)		
NOTES:	(1)	The total allowable strue exceed 30,000 psi.	ess SHALL NOT			
	(2)	Not the load, but considestablishment of Sh.	dered for the			
	(3)	Internal Pressure (inter	rnal load)			
						r

	THE M. W. K	ELLOGG COMPAN	IY	SUBJECT 3810
DEC 88	DESIGN MANUAL		HANICAL	PAGE 10 OF 13
		<u>TABLE C</u> CHMENT MATERIALS	<u>j"</u>	
PIPE MATERIA (Nominal)	L TEMPERATURE LIMITS (F)	ATTACHMENT MATERIAL	NOTES	
CARBON STEEL	-200 to 11000	CARBON STEEL	(1), (4),	(5)
CARBON-MOLY 1/2Cr-1/2Mo 1Cr-1/2Mo	-20° to 1100°	CARBON STEEL	(1), (4),	(5)
1-1/4Cr-1/2M	lo -20° to 1100°	CARBON STEEL	(1), (3),	(4), (5)
2-1/4Cr- 1Mo 5 Cr-1/2Mo	1100° to 1200°	SAME AS PIPE	(1), (3),	(5)
18Cr - 8Ni	-20° to 450°	CARBON STEEL	(1), (4),	(5)
1001 - 0111	4510 to 15000	SAME AS PIPE	(1), (2),	(4), (5)
NOTES: (1) (2) (3) (4) (5)	Carbon steel may b Piping Mechanical. In cases where car alloy steel may be Circular attachmen used for temperatu	e used above 450 bon steel cannot substituted, if ts (trunnions) s res above 750° F nits shown above lowable limits f	• F if approv be used econ approved by hall be are not	ed by omically,

DATE		THE M. W. KELLOGG	COMPANY	SUBJECT 3810
DEC 88	DESIGN	MANUAL - PIPIN	G MECHANICAL	PAGE 11 OF 13
	L			
	Nominal ana	ALLOY MATERI	<u>AL</u> fication, (seamless)	
NOMINAL		ASTM SPECIFICATION	GRADE OR SYMBOL	
CARBON-M 1/2%Cr -	1/2% Mo	A335 A335	P1 P2	_
2% Cr -	r -1/2% Mo 1/2% Mo	A335 A335 A335	P12 P11 P3b	
2-1/4% C 3% Cr - 5% Cr -	r - 1% Mo 1% Mo 1/2% Mo	A335 A335 A335	P22 P21 P5	
7% Cr - 9% Cr - 18% Cr -	1/2% Mo 1% Mo	A335 A335 A312	P7 P9 TP304	
			1	
				/
			-	
· · · · ·				

